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Abstract

We consider the sequence of sparse matrix-matrix multiplications performed during
the setup phase of algebraic multigrid. In particular, we show that the most commonly
used parallel algorithm is often not the most communication-efficient one for all of the
matrix-matrix multiplications involved. By using an alternative algorithm, we show
that the communication costs are reduced (in theory and practice), and we demonstrate
the performance benefit for both model (structured) and more realistic unstructured
problems on large-scale distributed-memory parallel systems. Our theoretical analysis
shows that we can reduce communication by a factor of up to 5.4 for a model prob-
lem, and we observe in our empirical evaluation communication reductions of factors
up to 4.7 for structured problems and 3.7 for unstructured problems. These reduc-
tions in communication translate to run-time speedups of up to factors of 2.3 and 2.5,
respectively.
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1 Introduction

Algebraic multigrid (AMG) is an efficient method for solving a large sparse linear system
Ax = b arising from a self-adjoint elliptic partial differential equation (PDE). The method
involves, during a setup phase, generating a sequence of related systems of decreasing size
and then, during a solve phase, using all systems to iteratively improve the solution to the
original system. The sequence of systems is generated algebraically; that is, the systems are
constructed from A without geometric knowledge of the underlying PDE.

On large-scale distributed-memory parallel machines, the computation time of the setup
phase is dominated by a sequence of sparse matrix-matrix multiplication (SpMMs) involving
matrices distributed across processors. In this paper, we show that the most commonly
used parallel SpMM algorithm is often not the most communication-efficient one for all
of the matrix multiplications involved. By using an alternative algorithm, we show that
the communication costs are reduced (in theory and practice), and we demonstrate the
performance benefit for both model and real problems on large-scale parallel systems.

We consider the smoothed aggregation multigrid method, described in more detail in
Section 3. After fine-level rows of A are grouped into coarse-level aggregates, there are three
sparse matrix multiplication operations performed to construct the coarse grid operator. The
tentative prolongation matrix P̂ represents aggregate membership, and the final prolongation
matrix P is computed by applying a step of damped Jacobi to P̂ , has the same sparsity
structure as the product A · P̂ . In the symmetric case, the coarse grid operator is given by
the triple product Ac = P TAP , which is typically performed with two more sparse matrix
multiplications: A · P and P T · (AP ).

The standard approach for performing each of these parallel sparse matrix multiplications
is to use a row-wise algorithm: for general C = A · B, each processor owns a subset of the
rows of A, a subset of the rows of B, and computes a subset of rows of C (which matches
the distribution of A). The communication required is an exchange of rows of B among
processors. We consider as an alternative the outer-product sparse matrix multiplication
algorithm, where each processor owns a subset of the rows of A, the corresponding subset of
columns of B, and the communication consists of exchanging partially unreduced rows of C
among processors (assuming the desired output distribution is row-wise). We describe these
general algorithms in more detail in Section 4.

Because of its low arithmetic intensity, the performance of parallel algorithms for sparse
matrix multiplication is typically bound by the cost of interprocessor communication and
data movement within each processor’s memory hierarchy. Based on interprocessor commu-
nication cost analysis of model problems, we conclude that the row-wise algorithm is the
most communication-efficient choice for computing A · P̂ and A ·P but the outer-product is
the better choice for computing P T · (AP ). For a fine grid operator corresponding to a 3D
27-point stencil on a regular grid, for example, the row-wise algorithm for P T (AP ) requires
more than 5× the communication of the outer-product algorithm. Furthermore, using the
outer-product algorithm for P T · (AP ) avoids the explicit redistribution of P T that is typ-
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ically required in order to use the row-wise algorithm and involves as much interprocessor
communication as a sparse matrix multiplication. We provide the theoretical analysis for
these conclusions in Section 5.

We have implemented the outer-product algorithm within the Trilinos software frame-
work, and we compare communication costs and running times of the two approaches for
representative matrices. Trilinos is a Sandia-centered collection of high performance numer-
ical libraries that target current and next-generation parallel computer architectures. Of
interest for the current discussion are the Tpetra and MueLu libraries. Tpetra provides
distributed sparse linear algebra services for maps, multivectors, and matrices [2]. These
form the basis for many Trilinos linear solver and preconditioner libraries. In particular,
the Trilinos multigrid library MueLu [22] depends on Tpetra. MueLu provides a variety of
aggregation-based linear multigrid preconditioning algorithms. Solvers based on the Tpetra
stack, including MueLu, have been demonstrated to provide effective, scalable precondition-
ers for large-scale parallel fluid applications [20]. For a more complete overview of Trilinos,
please see [19].

To confirm the theoretical analysis for sparse matrix multiplication within algebraic multi-
grid, our experiments include regular-grid stencil matrices for 2D and 3D problems. We also
perform tests in realistic settings, arising from a low Mach fluid dynamics application prob-
lem involving unstructured grids to demonstrate the benefits of the new approach. These
experimental results are presented in Section 6. For the model problems, we observe reduc-
tions in the amount of data communicated of up to 4.7× and run time improvements of up
to 2.3×. For the unstructured problems, we observe reductions in communication of up to
3.7× and speedups of up to 2.5×.

To summarize, the main contributions of this work include

• a scalable implementation of the outer-product algorithm in the Trilinos framework;

• theoretical communication cost analysis of various SpMM approaches for the setup of
a model AMG problem;

• experimental validation of reductions in communication and run time for both model
and application problems; and

• an argument that both row-wise and outer-product algorithms for SpMM have an
important role to play during AMG setup.
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2 Related Work

Many previous works have considered distributed-memory algorithms for sparse matrix-
matrix multiplication, both for general-purpose use [1, 4, 10] and for specific applications
[7, 12]. Buluç and Gilbert [10] propose, analyze, and evaluate the Sparse SUMMA algo-
rithm. This algorithm is based on the SUMMA algorithm for dense matrices [25] and has a
communication pattern that ignores the sparsity structure of the matrices; random permu-
tations of rows and columns of the input matrices encourages load balance across processors.
Borštnik et al. [7] use a similar idea for their proposed parallel algorithm, converting another
dense algorithm (Cannon’s [11]) to the sparse case and relying on random permutation to
achieve load balance. This work focuses on quantum-chemical applications and involves
optimizations particular to the application, including tuning local computations for dense
subblocks of various sizes and filtering small entries. Challacombe [12] proposes using the
row-wise algorithm (presented in Section 4.1) for another application from quantum chem-
istry. Akbudak and Aykanat [1] consider the outer-product algorithm (presented in Section
4.3) for matrices arising in several application areas. They propose a hypergraph model to
represent the communication costs particular to input sparsity structures and use hyper-
graph partitioning software to choose the best data-partitioning scheme. Ballard et al. [4]
consider multiple algorithms, classifying them into 1D (described in Section 4), 2D (which
include Sparse SUMMA and Sparse Cannon), and 3D varieties. They analyze and compare
the communication costs for multiplication of Erdös-Rényi random matrices and also prove
expectation-based communication lower bounds for those inputs.

Other works have addressed the sparse matrix multiplications specifically occurring within
the setup phase of algebraic multigrid, including algorithms and implementations for sequen-
tial [21], GPU [6, 13, 16], and distributed-memory parallel [5, 24] platforms. McCourt, Smith,
and Zhang [21] use a matrix coloring technique to cast the sparse matrix times sparse matrix
operation as a sparse matrix times dense matrix operation, and they show benefits of the
technique for matrices coming from geometric-algebraic multigrid with a sequential imple-
mentation. Bell, Dalton, and Olsen [6] describe efficient GPU implementations for both the
setup and solve phases of algebraic multigrid, including a sparse matrix-matrix multiplica-
tion algorithm based on fine-grained parallelism for computing the Galerkin triple product.
Further improvements and GPU optimizations for sparse matrix multiplication are described
in a subsequent paper [13]. Gremse et al. [16] also consider algebraic multigrid on the GPU
and use a technique called “row merging” to reduce the problem to multiplying matrices
with simplified structure and performing an efficient row merge operation. Tuminaro and
Tong [24] describe smoothed aggregation algebraic multigrid on distributed-memory ma-
chines; their approach is implemented within the ML package [15], which uses the row-wise
algorithm (presented in Section 4.1) for the sparse matrix-matrix products. Ballard et al. [5]
use a hypergraph model to characterize the communication costs of parallelization schemes
for general sparse matrix multiplication and consider the Galerkin triple product as a case
study; they conclude that the row-wise algorithm is communication efficient for the first of
the matrix-matrix products but inefficient for the second.

PETSc [3] provides a variety of options for performing the Galerkin triple-matrix product.
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The default option is to use the outer-product algorithm for the P T · (AP ) multiplication,
which avoids the redistribution of P T . The PETSc developers have observed that the row-
wise algorithm for P T · (AP ), where P T is already row-distributed, is significantly faster
than the outer-product algorithm. However, including the cost of the redistribution of P T in
the row-wise approach, they have observed that the outer-product approach is more efficient
overall [28]. In contrast, Hypre [14] performs the Galerkin triple-matrix product in a single
pass, rather than as two separate matrix-matrix multiplies [27].
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3 Algebraic Multigrid using Smoothed Aggregation

Algebraic multigrid is a provable scalable solution method for sparse linear systems

Ax = b (1)

arising from self-adjoint elliptic partial differential equations [8, 9, 17, 23].

In an AMG method, a sequence of linear systems of decreasing size, Aixi = bi, are
generated and used to accelerate the solution of (1). In this sequence, i = 0 corresponds
to (1). Associated with each linear system is a solution method called a smoother. The
smoother is an iterative method such as Gauss-Seidel, a polynomial method, an incomplete
factorization, or even a Krylov method. In a properly constructed AMG method, each
system in the sequence resolves a particular range of errors that can be quickly reduced
by its smoother. On regular meshes, the errors that are rapidly reduced by the smoother
are oscillatory in nature. Errors that are smoothly varying are handled by later systems in
the sequence. Information is transferred between the sequence’s systems with interpolation
(prolongation) matrices Pi and restriction matrices Ri. For symmetric problems, Ri = P T

i ,
and Ai+1 = RiAiPi for i > 0. In AMG, the main algorithmic challenge is the automatic
creation of the Pi’s and Ri’s. For smoothed aggregation, this entails paying special attention
to the near nullspace of A0, which we refer to as N . This is usually taken to be the nullspace
of the problem without any boundary conditions applied.

We now briefly outline the steps for constructing Pi using a smoothed aggregation multi-
grid method. More details can be found in [26]. First, coarse level degrees of freedom (DOFs)
are created by grouping fine level rows together into aggregates. The final prolongator will
have N global rows and M global columns, where N is the number of fine level rows and
M is the number of aggregates. Second, an intermediate tentative prolongator P̂ is created.
The vectors in the near nullspace N are rewritten to have local support over aggregates.
This means each vector z in N is expanded to a set of vectors vi, 0 < i < M . For each vector
vi

vi(j) =

{
z(j), if DOF j ∈ aggregate i

0, otherwise
. (2)

The vi’s are collected into a matrix B, which is a block rectangular (tall and skinny) matrix,
where each block corresponds to an aggregate. Each aggregate block in B is orthonormalized
via a local QR decomposition. The resulting orthonormal factors are collected into a block
matrix P̂ , the so-called tentative prolongator, and the upper triangular factors are collected
into a block matrix that is used as a coarse representation of N .

In the remainder of the paper, we will consider only linear systems arising from scalar
partial differential equations. In the scalar case, N has only one vector, and P̂ has M
normalized columns, one for each aggregate. For each column k, an entry j is nonzero if and
only if fine unknown j belongs to aggregate k.
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The final prolongator Pi is created by applying a step of damped Jacobi to P̂ ,

P =

(
I − 4ω

3
D−1A

)
P̂ , (3)

where D is the diagonal of A and ω is an estimate of the largest eigenvalue of D−1A.

3.1 Semicoarsening

For problem with anisotropic stencils or meshes, traditional point smoothers (e.g., Jacobi or
Gauss-Seidel) tend to smooth only in certain directions. This can severely degrade on the
convergence of the multigrid algorithm. One way to deal with this problem is a technique
known as semicoarsening [23, 26], wherein coarsening is performed only in directions where
the smoother is effective at damping error. For structured grid problems this may look
something like “only coarsen in z at this level” or “coarsen in x and y but not z,” depending
on the nature of the anistropy. In either case, semicoarsening allows us to recover optimal
multigrid convergence while still using using a traditional point smoother. However, this
convergence comes at the cost of solving a larger coarse grid problem. We will consider the
effects of semicoarsening on the cost of SpMM routines in more detail in Section 5.3.2.

3.2 Solve Phase

As mentioned in the introduction, algebraic multigrid methods rely on a hierarchy of increas-
ingly coarse resolution problems of the form Aixi = bi called levels to accelerate the solution
of the given linear system Ax = b. Applying the multigrid algorithm requires traversing
the levels. Each level’s linear system is solved using a typically inexpensive solver called a
smoother that is often based on a sparse matrix-vector kernel with the matrix Ai. Informa-
tion is propagated between levels by means of the prolongators Pi and restrictors Ri. Perhaps
the most common traversal scheme is called the V-cycle, in which the levels are visited from
fine to coarse, and then from coarse to fine. At each level of the descent and ascent, the
smoother is applied, and restrictors and prolongators propagate information between levels
via sparse-matrix vector applications. Thus, the running time of the solve phase depends
heavily on the efficiency of the sparse-matrix vector kernel with matrices Ai, Pi, and Ri.

We do not consider the solve phase in this work except to point out that our proposed
approach for the setup phase has one small (positive) effect on the solve phase. The running
time of a sparse matrix-vector kernel depends on the distribution of the nonzeros of the sparse
matrix, and we propose using a different distribution of the R matrix than the standard
approach. This change is considered in more detail (along with communication analysis) in
Section 5.3.3.
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4 Parallel 1D Algorithms for SpMM

We restrict attention to “1D” SpMM algorithms, as defined in [4]. Such algorithms align
naturally with 1D matrix partitions, assigning work to processors by subdividing only one
dimension of the three dimensional computation cube representing matrix multiplication.
Because there are three dimensions to subdivide, there are three types of 1D algorithms:
row-wise, column-wise, and outer-product algorithms. These algorithms can be applied to
general sparse matrices, and we will use the notation A · B = C to reference the input and
output matrices. See Figure 1 for a visualization of these three types of algorithms.

Our main motivation for restricting attention to 1D algorithms is to leverage the existing
software infrastructure in the Trilinos software package, which assumes 1D distribution of
matrices. However, there are other reasons to expect that 1D algorithms will be effective
in this setting. In particular, exploiting the sparsity structure of the input matrices is more
straightforward in the 1D case (as described below), resulting in communication patterns
of halo exchanges. The most widely used 2D algorithms are Sparse Cannon and Sparse
SUMMA (as discussed in Section 2), which have communication patterns that ignore the
sparsity structure of the matrices. For matrices corresponding to 2D and 3D physical prob-
lems, 1D algorithms involve exchanging messages with a processor’s nearest neighbors (e.g.,
8 or 26 other processors on a structured grid, independent of the total number of processors
p), whereas Sparse Cannon and Sparse SUMMA involve at least

√
p messages. While it is

possible to exploit sparsity structure within 2D or 3D algorithms (see [4]), we are not aware
of any robust implementation of such an algorithm. We note that deep in the multigrid hier-
archy, coarse grids typically fill-in and lose some of the properties of the physical structure,
and the advantages of structure-exploiting 1D algorithms can deteriorate.

Some evidence for the row-wise algorithm’s communication efficiency for one of the sparse
matrix multiplications (A · P ) within the Galerkin triple product is presented in [5]. The
authors show that the row-wise algorithm applied to a regular 3D grid with typical matrix
distributions achieves a communication cost almost as low as the best 3D algorithm identified
by a hypergraph partitioner.

4.1 Row-Wise Algorithm

The atomic task in the row-wise algorithm is the computation of a row of the output matrix
(see Figure 1(a)). Here, the assumed data distribution of all three matrices is row-wise, so
that each row is owned entirely by one processor. Furthermore, we assume that A and C
have identical row distributions.

If the row-wise algorithm is used to compute the product A · B = C, only entries of B
are communicated. Each processor owns a subset of the rows of A, and in order to compute
the same rows of C, each processor needs to access the rows of B, some of which are not
local, corresponding to nonzero columns in its local rows of A.
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∗∗ ∗∗∗∗ ∗
•

∗∗∗∗ ∗∗ ∗
=

∗∗ ∗∗∗∗∗∗ ∗∗
(a) Row-wise algorithm: Rows of C are computed as linear combinations of rows of B.
Row i of C depends on row i of A and rows of B corresponding to nonzero columns in
row i of A. The parallel algorithm uniquely assigns each row of C to a processor.

∗∗ ∗∗∗∗ ∗
•

∗∗∗∗ ∗∗ ∗
=

∗∗ ∗∗∗∗∗∗ ∗∗
(b) Column-wise algorithm: Columns of C are computed as linear combinations of
columns of A. Column j of C depends on column j of B and columns of A corresponding
to nonzero rows in column j of B. The parallel algorithm uniquely assigns each column
of C to a processor.

∗∗ ∗∗∗∗ ∗
•

∗∗∗∗ ∗∗ ∗
=

∗ ∗
∗ ∗

(c) Outer-product algorithm: C is computed as a sum of rank-one outer products of columns
of A and corresponding rows of B. The kth outer product depends on column k of A and
row k of B. The parallel algorithm uniquely assigns each outer product to a processor.

Figure 1. The three 1D algorithms for SpMM. Asterisks
represent nonzero values, and highlighted submatrices repre-
sent a subset of the computation in each algorithm that is
uniquely assigned to a processor.
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Thus, the total number of entries a processor must receive is roughly the number of
nonzero columns in local rows of A corresponding to nonlocally owned rows of B times the
average nnz per row of B. We define the indices corresponding to nonzero columns of local
rows of A and nonlocal rows of B as the halo of a given processor, and the number of entries
a processor must receive is the number of halo rows times the average nnz per halo row of
B, which might differ from the overall average.

4.2 Column-Wise Algorithm

The column-wise algorithm has very similar characteristics to the row-wise algorithm, though
the atomic task is the computation of a column of the output matrix (see Figure 1(b)). In
this case, the assumed data distribution is column-wise, we assume that B and C have
identical distributions, and only entries of A are communicated. Each processor owns a
subset of the columns of B, and in order to compute the same columns of C, each processor
needs to access the columns of A, some of which are not local, corresponding to nonzero
rows in its local columns of B. In this case, we define the halo of a processor as the indices
corresponding to nonzero rows of local columns of B and nonlocal columns of A, and the
number of entries a processor must receive is the number of halo columns times the average
nnz per halo column of A, which might differ from the overall average.

4.3 Outer-Product Algorithm

In the case of the outer-product algorithm, the atomic task is the outer product of a column
of A and the corresponding row of B, as shown in Figure 1(c). For this algorithm, we assume
that A is distributed column-wise, B is distributed row-wise, and that those distributions
match (so that for each i, column i of A and row i of B are owned by the same processor).
The desired distribution of C can be arbitrary, but here we will assume it is row-wise.

If the outer-product is used to compute the product A · B = C, only (possibly unre-
duced) entries of C are communicated. Each processor owns a subset of columns of A and
corresponding rows of B, but cannot completely compute all local entries of C; the processor
needs to receive contributions to local entries from other processors and merge them with
local contributions. As with the row-wise algorithm, we can define the set of halo indices for
a given processor. In the case of the outer-product algorithm, the halo indices are rows of A
corresponding to local rows of C that include a nonzero in a nonlocal column.
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Matrix nnz rows cols nnz/row nnz/col

A N · 3d N N 3d 3d

P̂ N N N/3d 1 3d

P N · (5/3)d N N/3d (5/3)d 5d

R N · (5/3)d N/3d N 5d (5/3)d

AP N · (7/3)d N N/3d (7/3)d 7d

Ac N N/3d N/3d 3d 3d

Table 1. Matrix statistics for 3d-point stencil fine grid op-
erator and ideal coarsening. Reported nonzero counts ignore
boundary effects, so actual counts approach the reported val-
ues as n → ∞. Similarly, nnz/row and nnz/col columns are
averages (in the limit).

5 Communication Cost Analysis for 3d-point Stencil

In order to analyze the communication costs of SpMM routines in the triple product coarsen-
ing operation within algebraic multigrid, we first introduce a graph-theoretic interpretation
of the relevant matrices. For the fine grid problem, we consider a regular mesh with n points
in each dimension, which means that our total number of fine grids points is nd, where d is
the number of dimensions.

5.1 Matrix Statistics

Since our parallel sparse matrix distribution is a 1D row distribution (i.e., each row is owned
entirely by one processor), and communication within our algorithms occurs in units of entire
rows, we are interested in the average number of nonzeros (nnz) per row of these matrices.
To compare with other column-based algorithms, we are also interested in the average nnz
per column. For the case of 3d-point stencils and ideal coarsening, we can express the limits
of these quantities in closed form. Lowest order tensor-product nodal finite elements (i.e.,
quads and hexes) have a 3d point stencil on a regular mesh, which is why we analyze this
case. We summarize the statistics of the matrices in Table 1, and derive them in more detail
in the following sections.

5.1.1 Fine Grid Operator A

Because A acts on the fine grid, its dimensions are N ×N = nd × nd. Entry Aij is nonzero
if the fine grid point i is adjacent to (a successor of) the fine grid point j in the graph
corresponding to A; in other words, Aij is nonzero if, when A acts on the fine grid, the
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output value at point i depends on the input value at point j.

In the case of a 3d-point stencil, every non-boundary node is adjacent to 3d neighbors
and all connections are reciprocal. Thus, the average nnz per row of A approaches 3d as
n→∞.

Note that we do not assume that A is a symmetric matrix, though it is structurally
symmetric here in the case of a 3d-point stencil. This implies that the average nnz per col
also approaches 3d.

5.1.2 Tentative Prolongation Operator P̂

A prolongation (or interpolation) operator maps the coarse grid to the fine grid, so the

dimensions of P̂ are N × (N/3d). The tentative prolongation operator maps each coarse grid

aggregate to a disjoint set of fine grid nodes (its “members”). Entry P̂ij is nonzero if the
fine grid node i is a member of coarse grid aggregate j. As each fine grid node is a member
of exactly one aggregate, the average nnz per row of P̂ is exactly 1.

Here we assume ideal coarsening. That is, we assume the fine grid to be a regular (3`)d

mesh, for some positive integer `, so that we can pick as aggregate roots fine grid nodes
all of whose coordinates are congruent to 1 mod 3. The members of an aggregate include
the root and all of the root’s neighbors (in the graph corresponding to A). Since ` is a
positive integer, all fine grid nodes are adjacent to some root and are therefore a member
of an aggregate. In the case of a 3d-point stencil with ideal coarsening, every aggregate has
exactly 3d members, so the nnz in each column of P̂ is exactly 3d.

5.1.3 Prolongation Operator P

Similar to P̂ , the prolongation operator P has dimensions N × (N/3d). We assume that P

is computed from P̂ via Jacobi smoothing: P = (I − ωD−1A)P̂ , where ω is a scalar and

D = diag(diag(A)). Thus, the sparsity structure of P is equivalent to that of AP̂ . Entry
Pij is nonzero if the fine grid node i is adjacent (in the graph corresponding to A) to a fine
grid node that is a member of coarse grid aggregate j.

In the case of a 3d-point stencil, the nnz of a given row of P depends on the position of
the fine grid node within the aggregate. For example, a root node is adjacent only to nodes
which are members of its own aggregate, so the nnz in a row corresponding to a root node is
1. However, a fine grid node in the corner of an aggregate may be adjacent to other nodes
from multiple aggregates. For d = 1, there are two types of nodes: roots and non-roots. We
can represent the possibilities for nnz per row as[

2 1 2
]

where we have labeled each fine grid node within one aggregate (not on the physical bound-
ary). That is, in the d = 1 case, non-root nodes at the boundary of an aggregate are adjacent
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to member nodes of two different aggregates, while a root node is adjacent to nodes that are
all members of the same aggregate. Since all non-boundary aggregates show this pattern,
the average nnz per row approaches 5/3 as n→∞ for d = 1. For d = 2, the pattern is4 2 4

2 1 2
4 2 4


and for d = 3 the pattern is

8 4 8
4 2 4
8 4 8

 4 2 4
2 1 2
4 2 4

 8 4 8
4 2 4
8 4 8


where we have flattened the 3 × 3 × 3 aggregate into 3 matrices. Computing averages over
a given aggregate, we see that the average nnz per row approaches (5/3)d as n → ∞ for
d ∈ {1, 2, 3}. Note that the average nnz per col of P is 5d.

5.1.4 Restriction Operator R

We assume here that the restriction operator R has the same sparsity structure as the
transpose of the prolongation operator, P T . Thus the average nnz per row of R approaches
5d and the average nnz per col of R approaches (5/3)d as n→∞.

5.1.5 Intermediate Matrix AP

One way to compute the triple product Ac = RAP is to perform the rightmost multiplication
first, yielding an intermediate matrix AP . If we assume that R has the same sparsity
structure as P T , then similar analysis will apply to computing RA first. The dimensions of
AP are N × (N/3d). Note that since the sparsity structure of P is equivalent to AP̂ , the

sparsity structure of AP is equivalent to A2P̂ . Thus, entry (AP )ij is nonzero if the fine grid
node i is 2-hop adjacent to (i.e., is a successor of a successor of) a member of coarse grid
aggregate j.

In the case of a 3d-point stencil, the nnz of a given row of AP again depends on the
position of the fine grid node within the aggregate. For example, given two hops, a root
node can now reach all 3d aggregates adjacent to its own aggregate. Using the same notation
as before, the possible nnz in a row (for fine grid nodes in non-boundary aggregates) are as
follows. The patterns are for d = 1: [

2 3 2
]
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for d = 2: 4 6 4
6 9 6
4 6 4


and for d = 3:

 8 12 8
12 18 12
8 12 8

 12 18 12
18 27 18
12 18 12

  8 12 8
12 18 12
8 12 8


so the average nnz per row is given in general by (7/3)d. Note that the average nnz per col
of AP is 7d.

5.1.6 Coarse Grid Operator Ac

Because the coarse grid operator Ac acts on the coarse grid, its dimensions are (N/3d) ×
(N/3d). The matrix coarse grid operator is determined by Ac = RAP . Intuitively, entry
(Ac)ij is nonzero if the coarse grid aggregate i is adjacent to (i.e., a successor of) the coarse
grid aggregate j in the graph corresponding to Ac. Assuming A is structurally symmetric
and R = P T , we can characterize an entry of Ac more specifically: (Ac)ij is nonzero if coarse
grid aggregate i has a member that is 3-hop adjacent to (i.e., a successor of a successor of a
successor of) a member of coarse grid aggregate j.

In the case of a 3d-point stencil, 3 hops is not enough to cross an entire aggregate. Thus,
an aggregate is adjacent to only those aggregates that share 1-hop member neighbors. This
implies that the structure of Ac is equivalent to that of A: Ac is also a 3d-point stencil matrix,
and thus the average nnz per row and average nnz per col also approach 3d. We note that
because of the reduction in matrix dimension, the true averages will not be as close to 3d as
those of A; boundary effects play a larger role for smaller problems.

5.2 Communication Cost Analysis for AMG Setup

We will consider various algorithms for computing Ac for a given fine grid A and tentative
prolongation operator P̂ . The usual approach is to compute

1. P = (I − ωD−1A) · P̂ ,

2. AP = A · P , and

3. Ac = R · (AP ).
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Row-Wise Column-Wise Outer-Product

P = A · P̂ 1 0 (5/3)d−1

AP = A · P 2(5/3)d−1 3d 2(7/3)d−1

Ac = R · (AP ) 2(7/3)d−1 2(5/3)d 2

Table 2. Communication costs of 1D algorithms for one
level of algebraic multigrid setup for 3d-point stencil ma-
trix. Each entry is the maximum per-processor bandwidth
cost (number of elements sent and received), divided by 2hF
(where hF is the size of the outer halo) and ignoring lower
order terms, for the given computation and algorithm. Each
entry assumes the matrices are distributed as required by the
corresponding algorithm (the outer product analysis also as-
sumes the output matrix is distributed row-wise). The cost of
the proposed choice of algorithm for each row is highlighted
in boldface.

For symmetric problems (or slightly nonsymmetric problems) the R matrix is usually
generated by R = P T . We assume A is numerically symmetric and R = P T in this section.
For problems with pronounced asymmetry, R = P̂ T (I − ωD−1A) might be chosen instead.
See Section 5.3.1 for a discussion of this case.

In the case of 3d-point stencil with ideal coarsening, we assume the number of processors
p can be arranged into a d-dimensional logical grid, with p1/d dividing n evenly. Then we
assume the partitioning of the fine and coarse grids to processors follows the regular geometric
pattern so that, in the 3D case, each processor owns a contiguous (n/p1/3)×(n/p1/3)×(n/p1/3)
subset of the fine grid. Furthermore, we assume no aggregate crosses a processor boundary
(i.e., we assume uncoupled aggregation).

Table 2 summarizes the results of this section. We state the communication costs for
the three SpMM computations within AMG setup for the three different 1D algorithms.
We emphasize in boldface the proposed algorithm for each SpMM. Note that although the
column-wise approach requires no communication for A · P̂ , we do not use it for the SpMM
because it would require a re-distribution of P from column-wise to row-wise in order to
perform the row-wise algorithm for A · P . This redistribution requires more communication
than performing the row-wise algorithm on A · P̂ . The row-wise algorithm is clearly the
optimal choice for the second SpMM, and the outer-product algorithm is the optimal choice
for the third SpMM. The analysis for the row-wise algorithm on all SpMMs is given in
Section 5.2.1, the analysis for the outer-product algorithm on the final SpMMis given in
Section 5.2.2, and a summary of the analysis for the other entries are given in Appendix A.
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5.2.1 Row-Wise Approach to Triple Product

Here we consider the communication costs of using the row-wise algorithm for each SpMM.
The costs of each of the SpMM operations will depend on the size of the halo with respect to
the fine grid operator. In the 3D case, if a processor owns a contiguous (n/p1/3)× (n/p1/3)×
(n/p1/3) subset of the fine grid, the halo will be all grid nodes that are adjacent to (but
not in) the subset. We will refer to this as the outer halo, as the nodes are not local; the
inner halo corresponds to data that must be sent to other processors. Note that we ignore
processors on the processor grid boundary, as their halos are smaller. The number of outer
halo nodes hF is then

hF =

((
N

p

)1/3

+ 2

)3

− N

p
= 6

(
N

p

)2/3

+ 12

(
N

p

)1/3

+ 8,

where the first term corresponds to faces, the second to edges, and the third to corners. In
the general case, we have

hF = 2d

(
N

p

)1−1/d

+ O

((
N

p

)1−2/d
)
,

and the number of inner halo nodes differs by only a lower order term. In particular, when
we ignore lower order terms, we are considering only halo nodes lying on boundary “faces.”
In the 2D case, we are ignoring corner nodes; in the 3D case, we are ignoring edge nodes and
corner nodes.

The communication costs of P = (I − ωD−1A) · P̂ are identical to A · P̂ , so we first

consider A · P̂ . For the row-wise algorithm, the number of nonlocal rows of P̂ needed is hF ,
and the nnz of each row of P̂ is 1. Thus, the total number of nonlocal elements received
by a non-boundary processor is hF , and that processor must send as many elements to its
neighbors.

The second multiply is AP = A · P . Again, the left input matrix is A, so the number of
rows needed here is also hF . The average nnz per row of P is (5/3)d, but that average is not
an accurate measure if we restrict attention to halo rows. For example, in the 1D case, the
pattern of nnz in a row corresponding to fine grid nodes within an aggregate is

[
2 1 2

]
.

Because aggregates do not traverse processor boundaries, a root node can never be in a halo.
Thus, in the 1D case, the nnz of every halo row of P is 2. In the 2D case, the nnz of halo
node rows follows the pattern

[
4 2 4

]
. In the 3D case, the pattern is8 4 8

4 2 4
8 4 8

 .

In general, the average nnz per row (restricted to the halo) of P is 2(5/3)d−1, and the total
number of nonlocal elements received is hF · 2(5/3)d−1. Again, the number of elements sent
is the same as the number received.
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In order to perform the row-wise algorithm to compute R · (AP ), we require the R
matrix be distributed in the same row distribution as Ac. A local transposition of each
processor’s local rows of P yields R in column distribution, but to attain row distribution,
a communication operation similar to a SpMM is required. While a row distribution of P
means a processor owns all weights of edges incident to local fine nodes, a row distribution
of R means a processor owns all weights of edges incident to local coarse aggregates. Thus,
the nonlocal data needed lies in rows of P corresponding to a processor’s halo. Since all the
halo rows of P were already accessed to perform AP = A ·P , all of the data needed to attain
row distribution of R is available locally, and no more communication is required. Note that
this optimization is not possible when coupled aggregation is used (in which case aggregates
can cross processor boundaries).

Note that if R is explicitly redistributed from column-wise to row-wise, then each proces-
sor needs to receive nonzeros corresponding to edges from local fine grid points to nonlocal
coarse grid aggregates. The average number of nonlocal coarse grid aggregates to which a
local fine grid point is adjacent is (5/3)d−1. In the 2D case, the pattern is

[
2 1 2

]
, and in

the 3D case, the pattern is 4 2 4
2 1 2
4 2 4

 .

Thus, the communication cost of the explicit redistribution is hF · (5/3)d−1, or half the cost
of the AP = A · P SpMM.

The last multiply is Ac = R · (AP ). The halo required for this operation is with respect
to R, but because of how R = P T is computed (so that the row distribution of R matches
that of A), this halo is the same as that of A and consists of hF rows. Again, the average
nnz in halo rows of AP differs from the overall average. The patterns for nnz in halo rows
of AP are given by 2 (for 1D),

[
4 6 4

]
(for 2D), and 8 12 8

12 18 12
8 12 8


(for 3D). For AP , the average nnz is 2(7/3)d−1 and therefore the total number of nonlocal
elements received is hF · 2(7/3)d−1 (and the same number of elements must be sent by each
processor).

5.2.2 Outer-Product Approach to Ac = R · (AP )

An alternative method to the one given in Section 5.2.1 is to use the outer-product algorithm
for the final multiplication. The first observation is that since R = P T , a transpose of local
P data achieves R in a global column distribution that matches the row distribution of AP .
Thus, the assumptions on data distribution for the outer-product algorithm are met without
any communication. The next observation is that the total nnz of Ac is less than the total
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nnz of AP , so communicating Ac may be cheaper than communicating AP (i.e., the outer-
product algorithm may be cheaper than the row-wise algorithm). More precisely, we will see
that although the average nnz per row of Ac is greater than that of AP , fewer (unreduced)
rows of A need to be communicated because the halo in the coarse grid is smaller than the
halo in the fine grid.

In order to determine the communication cost of the outer-product algorithm, we will
first compute the size of the halo. The desired distribution of Ac is row-wise, with each
processor owning rows corresponding to coarse grid aggregates comprised of local fine grid
nodes. Thus, the halo consists of rows of R corresponding to local aggregates that are
adjacent to nonlocal fine grid nodes (since the local columns of R correspond to local fine
grid nodes). That is, the halo is the set of local aggregates at the processor boundary, an
inner halo in the coarse grid. The outer halo corresponds to data that must be sent from
the processor to its neighbors. The number of inner halo aggregates hC is then

hC =
N/3d

p
−

((
N/3d

p

)1/d

− 2

)d

= 2d

(
N/3d

p

)1−1/d

+ O

((
N

p

)1−2/d
)
≈ hF

3d−1
.

Again, the size of the outer halo differs by a lower order term.

While the average nnz per row of Ac is 3d, the average is smaller for unreduced rows
of Ac corresponding to halo aggregates. The nnz per row of Ac corresponds to the number
of aggregates reachable from a given aggregate with three hops in the fine grid. The nnz
per unreduced row of Ac corresponds to the number of aggregates reachable from a given
inner halo aggregate with three hops, provided that the first hop is to a fine grid node in
the outer halo. Because of the constraint on the first hop, the nnz per unreduced row of
Ac is less than 3d (the average nnz per row of the final Ac). Consider a halo aggregate on
a boundary face. In the 1D case, a right-boundary aggregate can reach the aggregate to
its right (across the boundary) and itself, but not its neighbor to the left, so the unreduced
row of Ac has 2 nonzeros. In the 2D (3D) case, an aggregate can reach its 3 (9) neighbor
aggregates across the boundary, and those neighbors also on the boundary, but not its 3
(9) neighbor aggregates in the opposite direction from the boundary, so its row has 6 (18)
nonzeros. See Figure 2 for an illustration in the 2D case of the 6 aggregates reachable from
a halo aggregate given the constraint on the first hop. Thus, the nnz per unreduced row is
2 · 3d−1. The total number of nonlocal elements received is then hC · 2 · 3d−1 ≈ hF · 2, and
the same number of elements must be sent to neighbors.

Note that this cost is a factor of (7/3)d−1 ≈ 5.44 smaller than the cost of the row-wise
algorithm.
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Figure 2. Illustration of six aggregates (boxes with thick
borders) reachable from the shaded aggregate on a processor
boundary (shown as a dashed line), given three hops on the
2D 9-pt stencil fine grid (one for the smoothing of P , one for
the A in the Ac = RAP product and one for the smoothing
of R). Here, the first hop is always constrained to cross the
processor boundary and the fine grid unknowns are assigned
a number based on the smallest number of hops needed to
reach the unknown from the shaded aggregate. The number
of reachable aggregates corresponds to the sparsity pattern of
the (shaded) row of Ac. These (unreduced) nonzeros must be
communicated in the outer-product algorithm. We see that
in this idealized case, the communicated nonzeros correspond
to only 6 of 9 neighboring aggregates.
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5.3 Extensions of Theoretical Analysis

5.3.1 Nonsymmetric Problems

In the case that A is nonsymmetric, there may be another SpMM to compute R = P̂ T (I − ωD−1A).
As in the symmetric case, we consider the three 1D algorithms, this time for computing
R = P̂ T · A.

For 3d-point stencil analysis, we will consider A to be structurally symmetric but not
numerically symmetric. Since this computation is the structural transpose of P = A · P̂ ,
the communication costs are given in the first row of Table 2. That is, assuming the input
matrices are appropriately distributed, the row-wise algorithm has a communication cost of
approximately 2·3d ·hF , the column-wise algorithm has a cost of 2·hF , and the outer-product
algorithm has a cost of 2 · (5/3)d−1 · hF (assuming the output is distributed column-wise).

Although this analysis suggests that the column-wise algorithm should be used to com-
pute R, the communication cost assumes that A is distributed column-wise. The optimal
algorithm for computing P = A · P̂ is the row-wise algorithm, which requires A to be dis-
tributed row-wise. Thus, in order to use the best algorithm for each computation, an explicit
redistribution of A is required. Note that the sparsity structure of P̂ is such that row-wise
and column-wise distributions are the same (this assumes uncoupled aggregation). The com-
munication cost of redistributing A from row-wise to column-wise is 2 · 3d−1 · hF , since every
halo point is adjacent to 3d−1 neighbors across the processor boundary.

Note that the outer-product algorithm for R = P̂ T ·A assumes P̂ T is distributed column-
wise and A is distributed row-wise, which matches the requirements of the row-wise algorithm
for computing P = A · P̂ . Furthermore, the outer-product algorithm outputs R in a column-
wise distribution, which matches the requirements of the outer-product algorithm for Ac =
R·(AP ). Because the cost of explicitly redistributing A exceeds the cost of the outer-product
algorithm, the outer-product algorithm is the optimal choice of 1D algorithms for computing
R in the case of the 3d-point stencil matrix.

5.3.2 Semi-Coarsening

In the case of semi-coarsening (see Section 3.1), the ratio of fine grid nodes to coarse grid
aggregates drops from 9 to 3 (in the 2D case) or from 27 to 9 or 3 (in the 3D case, depending
on how many dimensions are coarsened). Assuming the same distribution of fine grid nodes
to processors as in the previous section, we can change the dimensions and sparsity structure
of P̂ and repeat the analysis to determine the most efficient algorithms for the coarse grid
setup. To prevent extra fill in the coarse grid operator, we also use filtering in computing
the prolongation operator P . That is, we compute P = (I − (4/3)ωD−1AF )P̂ , where AF

is a filtered representation of A that includes only those nonzeros corresponding to edges
in the coarsened directions. The communication requirements of computing P in this way
follows that of computing AF · P̂ . In this case, the analysis differs from Section 5.2 and
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full coarsening. We provide a comparison of the communication costs for the final R · (AP )
multiply for row-wise and outer-product algorithms in this section. We consider the 2D case
with coarsening in one dimension and the 3D case with coarsening in one or two dimensions.

2D Case - One Coarsened Dimension We first consider the 2D 9-point stencil case,
where coarsening occurs in only one dimension. In this case, if A is N × N , then P̂ is
N × (N/3). While P̂ has 3 nonzeros per column, P has the structure of AF P̂ and has 5
nonzeros per column. The 5 nonzeros in a column correspond to an aggregate’s 3 member
fine points and the 2 neighbor fine points in the coarsened direction. The matrix AP has 21
nonzeros per column, and the nnz per row follows the pattern

[
6 9 6

]
.

If we compute Ac = R · (AP ) using the row-wise algorithm, then the communication
includes receiving nonlocal rows of AP that are needed to compute rows of Ac corresponding
to local aggregates. Because R = P T has the structure of P̂ TA, the only required nonlocal
rows correspond to halo points owned by neighboring processors in the coarsened dimension.
That is, only 2 out of the 4 processor boundary edges involve communication. Furthermore,
all rows of AP corresponding to points in this part of the halo have 6 nonzeros per row.
Thus, the communication cost of the row-wise algorithm is (hF/2) · 6 = 3 · hF .

If we use the outer-product algorithm to compute Ac = R·(AP ), then the communication
involves receiving unreduced local rows of Ac computed by other processors. These nonlocal
unreduced rows correspond to paths that start from a local aggregate, hop to a nonlocal
point in the graph corresponding to R, hop to another point in the graph corresponding to
A, and finally hop to another aggregate in the graph corresponding to P . The number of
local aggregates for which such a path is possible is hF/2, because a hop across a processor
boundary in the graph corresponding to R must be in the coarsened direction and there are
as many coarse grid aggregates along those two boundary edges as there are fine points. The
number of nonzeros in each of the unreduced rows is the number of aggregates reachable by an
inner halo aggregate under the constraints of this 3-hop path, which is 6. We illustrate these
6 reachable aggregates in Figure 3. Therefore, the communication cost of the outer-product
algorithm is also 3 · hF , the same as the row-wise algorithm.

3D Case - Two Coarsened Dimensions We now consider the 3D 27-point stencil
case, where only two dimensions are coarsened. Here P̂ is N × (N/9) and each column has

9 nonzeros. As before, P has the structure of AF P̂ and so has 25 nonzeros per column; AP
has 147 nonzeros per column, and the nnz per row follows the pattern12 18 12

18 27 18
12 18 12

 .

If we use the row-wise algorithm to multiply R · (AP ), then processors communicate
rows of AP corresponding to halo points in the graph corresponding to R. Because R was
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Figure 3. Illustration of six aggregates (boxes with thick
borders) reachable from the 2D semicoarsened shaded ag-
gregate on a processor boundary (shown as a dashed line),
given three hops on the 2D semicoarsening 9-pt stencil fine
grid (one for the smoothing of P with vertical connections
dropped, one for the A in the Ac = RAP product with all
connections included, and one for the smoothing of R with
vertical connections dropped). Here, the first hop is always
constrained to cross the processor boundary and the fine grid
unknowns are assigned a number based on the smallest num-
ber of hops needed to reach the unknown from the shaded
aggregate. The number of reachable aggregates corresponds
to the sparsity pattern of the (shaded) row of Ac. These
(unreduced) nonzeros must be communicated in the outer-
product algorithm. We see that in this idealized case, the
communicated nonzeros correspond to only 6 of 9 neighbor-
ing aggregates.
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computed with the filtered matrix AF , these halo points lie along faces in the two coarsened
dimensions, but not in the third dimension. Thus, the number of rows each processor
needs to receive is approximately 2hF/3. The average number of nonzeros in these rows is
(12 + 18 + 12)/3 = 14, yielding a total communication cost of (28/3) · hF .

Using the outer-product algorithm for Ac = R · (AP ), each processor must receive unre-
duced rows of Ac from other processors. As in the 2D case, such rows correspond to 3-hop
paths that start from a local aggregate and meet the constraints of the graphs corresponding
to R, A, and P . The number of local aggregates (or unreduced rows) is the size of the inner
aggregate halo that lies along faces in the coarsened directions. That is, only 4 out of 6 faces
are included in the halo, and on these faces the number of aggregates is 1/3 of the number of
fine points. Thus, the number of unreduced rows that must be received approaches 2hF/9.
The number of nonzeros in each of the unreduced rows is the number of aggregates reach-
able by an inner halo aggregate under the constraints of this 3-hop path, which is 18. The
communication cost of the outer-product algorithm is thus 4 · hF , which is a factor of 7/3
less than the row-wise algorithm.

3D Case - One Coarsened Dimension Finally, we consider the 3D 27-point stencil
case, where only one dimension is coarsened. The analysis follows the previous cases: AP is
N × (N/3) and the nnz per row follows the pattern

[
18 27 18

]
. In the row-wise algorithm,

each processor must receive approximately hF/3 rows from other processors. Each of those
rows has 18 nonzeros, so the communication cost approaches 6 · hF . In the outer-product
algorithm, each processor must receive approximately the same number of (unreduced) rows,
and each of those rows contains the same number of nonzeros. Thus, the communication
costs of the two algorithms are equivalent in this case, ignoring lower order terms.

5.3.3 Applying R during Solve Phase

An important benefit of using the outer-product algorithm for Ac = R · (AP ) is that the R
matrix need not be explicitly redistributed into row-wise distribution. However, as described
in Section 3.2, the solve phase includes computing SpMV products with R, A, and P . If
the row-wise approach is used for all SpMM operations within the setup phase, then all
three matrices are available in row-wise distribution and the same row-wise SpMV algorithm
can be used for all during the solve phase. If the R matrix is distributed column-wise (as
is the case in the outer-product approach), then a column-wise SpMV algorithm must be
used for R during the solve phase. The following analysis argues that this is yet another
benefit of the outer-product approach: in the case of applying R, column-wise SpMV is more
communication efficient than row-wise SpMV.

Let us assume R is computed from a 3d-point stencil fine grid operator as described in
Section 5.1.4. If R is row-wise distributed, then the communication cost of SpMV can be
computed similarly to the row-wise SpMM algorithm for R · (AP ), assuming the output
vector is distributed according to the row distribution of R. That is, the number of rows
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of the input vector that must be read by a processor is the size of that processor’s fine grid
halo (with respect to R), which is hF . The average nnz in halo rows of the input vector is
exactly one (because it is a dense vector), so the communication cost of the row-wise SpMV
is hF .

On the other hand, if R is column-wise distributed, then the communication cost of SpMV
can be computed similarly to the outer-product SpMM algorithm for R · (AP ), assuming
the input vector is distributed according to the column distribution of R. In this case, the
output vector is communicated according to each processor’s coarse grid halo. As described
in Section 5.2.2, the size of the coarse grid halo is hF/3d−1, and the nnz per row of the
output vector is again one (because it is a dense vector). Thus, the communication cost of
the column-wise SpMV with R is a factor of 3d−1 smaller than the row-wise SpMV.

5.4 All-at-once Triple Product

In this section we consider a more drastic alternative to computing the Galerkin triple
product: performing one communication phase up front so that each processor has complete
information locally to compute its rows of P (columns of P T ) and Ac all at once. This
approach involves redundant computation but has the benefit of reducing the number of
halo exchanges from three (in the case of computing P , AP , and Ac is separate calls to an
SpMM routine) to one. While this decrease in the latency cost is substantial, we argue here
that it comes at the expense of greater per-processor bandwidth cost (more words sent and
received). We will ignore the extra computational cost.

For this analysis, we assume that A corresponds to a 3d-point stencil (as described in
Section 5.1.1) and is distributed row-wise; we seek a row-wise distribution of P that matches
A and a row-wise distribution of Ac that matches that of Section 5.2. Assuming uncoupled
aggregation, the local rows of P̂ can be computed without any communication. In order to
compute the local rows of P , each processor needs access to the nonlocal rows of P̂ that
correspond to its halo (this is identical to the SpMM of A and P̂ ). Since this data is a subset
of the data needed to compute Ac all at once, we will ignore its cost.

In order to compute the local rows of Ac, each processor needs to determine the nonzero
values corresponding to edges from all coarse grid aggregates to local coarse grid aggregates.
These edges are computed from all paths that originate from a local aggregate, hop to the
fine grid along an edge from P̂ T , take three hops in the fine grid, and then hop to a coarse
grid aggregate along an edge from P̂ . Since the processor owns all edges corresponding to
the first hop (these correspond to a locally owned row of A), it needs access to all edges
corresponding to its two-hop halo with respect to the fine grid operator A. In order to
account for all possibilities of the first hop, the processor also needs access to the rows
of P̂ corresponding to the three-hop halo with respect to the fine grid operator. Ignoring
lower order terms, the two-hop halo has size 2hF and the three-hop halo has size 3hF . The
processor needs entire rows of A and P̂ , consisting of 3d and 1 nonzeros, respectively. Thus,
the total amount of data each (non-boundary) processor needs to receive is hF · (2 · 3d + 3)
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words, and it must send as many to other processors.

Compared to the proposed approach of computing the triple product one SpMM at a
time, this all-at-once approach requires greater communication cost, by a factor of (2 · 3d +
3)/(2 · (5/3)d−1 + 3), or 3.3× in the 2D case and 6.7× in the 3D case. The original row-wise
approach is also cheaper than the all-at-once approach, though by a smaller factor. However,
if performance is latency bound, then the all-at-once approach can be beneficial as long as
the increase in local computation and bandwidth cost does not outweigh the reduction in
messages.
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6 Performance Results

6.1 Experimental Setup

We use two experimental platforms in this study. The first is “Edison,” a Cray XC30
supercomputer located at NERSC, consisting of 5,576 dual-socket 12-core Intel “Ivy Bridge”
(2.4 GHz) compute nodes. Each core has private 64KB L1 and 256KB L2 caches, and each
socket has a 30MB L3 cache and 32GB of memory. The nodes are connected by a Cray
“Aries” interconnect with a dragonfly topology.

The second is “Sky Bridge,” a Cray cluster at Sandia, consisting of 1,848 dual-socket
8-core Intel “Sandy Bridge” (2.6 GHz) compute nodes. Each core has private 32KB L1 and
256KB L2 caches, and each socket has a 20MB L3 cache and 32GB of memory. The nodes
are connected by an Intel “QLogic QDR InifiniBand” interconnect with a fat-tree topology.

For our experiments, we use the MPI-based implementations of these algorithms in the
Trilinos library [18]. Specifically, we use the algebraic multigrid package MueLu [22] and
the sparse linear algebra package Tpetra. Both the row-wise and outer-product SpMM
algorithms are implemented in Tpetra and used by MueLu as described in the sections
below. We focus our attention on the highest level of the multigrid hierarchy (where A is the
original operator), as that dominates the run time of the entire setup for these problems.

6.2 Model Problems

In this section we consider problems with structured grids and operators corresponding
to regular stencils. We confirm the theoretical analysis from Section 5.2 with respect to
communication costs and also test the effect of reduced communication on actual runtime.

As in Section 5.2, we assume a fine grid consisting of nd points, where d ∈ {2, 3} is the
dimension of the problem. We consider four stencils: 2D 5-point, 2D 9-point, 3D 7-point, and
3D 27-point. Note that the theoretical analysis applies to the 2D 9-point and 3D 27-point
stencils. For the 2D 9-point problem, we also consider semi-coarsening in one dimension (2D
9-point (semi)); for the 3D 27-point problem, we consider semi-coarsening where we do not
coarsen in one (3D 27-point (semi1)) or two (3D 27-point (semi2)) dimensions. We perform
weak-scaling experiments, maintaining approximately 100,000 fine grid points per core for
all problems. For the 2D problems, we use numbers of nodes that are perfect squares up to
a maximum of 252 · 24 = 15000 cores. For the 3D problems, we use numbers of nodes that
are perfect cubes up to a maximum of 93 · 24 = 17496 cores.

We present the relative performance of the outer-product algorithm compared to the row-
wise algorithm for R · (AP ) for all model problems in Figure 4. The time for the row-wise
algorithm includes the time spent redistributing R from column-wise to row-wise distribution.
The largest speedup of 2.3× is attained for the 3D 27-point problem running on 17,496 cores.
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Figure 4. Speedups of the outer-product algorithm over
the row-wise algorithm for model problems as observed on
Edison. The number of fine grid points per core is approxi-
mately 100K for all problems.

Overall, the speedups are fairly constant as the core count increases, which implies that the
two algorithms are scaling similarly. We observe that in some cases (particularly for the 2D
or semi-coarsening problems at low core counts), the outer-product multiplication R ·(AP ) is
slower than the row-wise multiplication; however, including the cost of the redistribution of
R, the outer-product algorithm is a net improvement in all cases except 3D 27-point (semi2),
as shown in Figure 4.

In Table 3, we present the ratios of per-processor communication costs for row-wise
compared to outer-product algorithms for the Ac = R · (AP ) matrix multiplication. The
communication cost is the maximum over all processors of the sum of the amount of data
sent and received. We note that the measured communication validates the theoretical
analysis from Section 5.2, both in terms of the number of rows communicated as well as the
total amount of data. The theoretical numbers in Table 3 assume perfect coarsening (that
all local grid dimensions are multiples of 3) and ignore lower order terms (corresponding
to edge and corner halo points); these effects make an impact for the 3D problems we
consider. For example, in the 3D problems, edge and corner grid points constitute about
4% of each processor’s fine grid halo and about 11% of the coarse grid halo. In the cases
of semicoarsening, the inaccuracy of the ratio of number of rows communicated is due to
a slight inefficiency in our outer-product implementation; while we do not expect much
of a performance improvement, we plan to update our implementation for use in future
applications. Recall that the number of rows communicated during the row-wise algorithm
corresponds to the processor’s fine grid halo (with respect to R in row-wise distribution),
while that of the outer-product algorithm corresponds to the processor’s coarse grid halo
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Fine Grid Operator
Rows Data

Measured Theory Measured Theory
2D 5-point 2.4 - 1.7 -
2D 9-point 3.0 3 2.3 2.3

2D 9-point (semi) 0.8 1.0 1.0 1.0
3D 7-point 4.0 - 2.2 -
3D 27-point 7.9 9.0 4.7 5.4

3D 27-point (semi1) 2.3 3.0 2.1 2.3
3D 27-point (semi2) 0.7 1.0 1.0 1.0

Nalu-Edge 2.3 - 2.3 -
Nalu-Element 7.9 - 3.7 -

Table 3. Factors by which the communication cost of the
row-wise algorithm exceeds that of the outer-product algo-
rithm for Ac = R · (AP ) for model problems. The measured
ratio is based on actual implementation while the theoretical
ratio is the result of the analysis from Section 5.2. “Rows”
corresponds to the number of rows sent and received and re-
flects the relative sizes of the maximum fine grid halo and the
maximum coarse grid halo. “Data” corresponds to the max-
imum amount of data sent and received over all processors.

(with respect to R in column-wise distribution). The difference in ratios between rows and
actual data demonstrates that the number of nonzeros per row communicated is greater
for the outer-product algorithm than the row-wise algorithm, but overall the outer-product
algorithm provides a net reduction.

To demonstrate more clearly the differences in the two approaches to computing R·(AP ),
we present a time breakdown plot in Figure 5 for the 3D 27-point problem at various scales.
Recall that the row-wise approach requires a redistribution of R, in this case an explicit trans-
pose of P . The transpose operation consists of a transpose of local data (“Local Transpose”),
a communication phase to achieve row-wise distribution (“Communication (TransP)”), and
then a merge phase to unify the local matrix data structure (“Local Merge (TransP)”).
The row-wise algorithm for R · (AP ) consists of a communication phase (“Communica-
tion (RAP)”) followed by the actual multiplication (“Local Multiply”). The outer-product
algorithm consists of a local transpose of P to obtain R in column-wise distribution (“Lo-
cal Transpose”), the matrix multiplication (“Local Multiply”), a communication phase to
achieve row-wise distribution of Ac (“Communication (RAP)”), and finally a merge phase
to finish reducing the final result (“Local Merge (RAP)”). The communication costs include
the time to pack and unpack messages into buffers and convert between local and global
information, all of which is proportional to the amount of data being communicated.

Note that both approaches share the local transpose and local multiply, shown at the
bottom of the plots, and we expect those costs to be nearly equal. The two main benefits
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Figure 5. Time breakdown of the two approaches for
R · (AP ) for various numbers of nodes. The row-wise ap-
proach (on the left of each pair) includes both redistribution
of R (by explicitly transposing P ) and the matrix multiplica-
tion. The outer-product approach (on the right of each pair)
includes a transpose of the local entries of P to obtain R in
column-wise distribution as well the matrix multiplication.
Communication includes the cost of packing and unpacking
message buffers. All values have been normalized to the cost
of the outer-product algorithm on 1 node.

of the outer-product approach are the reduction in communication during the R · (AP )
operation and the avoidance of the redistribution of R. The reduction in communication can
be seen by comparing the “Communication (RAP)”; in the case of 729 nodes, the ratio is a
factor of 3.3. The cost of the redistribution of R can be seen in the other two contributions
with the “TransP” label. The extra overhead of the outer-product algorithm is the final
merge, given by “Local Merge (RAP),” which is relatively small.

For context, we provide two more plots for the model problem data. Figure 6(a) shows
the weak-scaling of the outer-product algorithm for all model problems. Note that after the
initial drop in performance from 1 node, the scaling is reasonable for all problems. While
the 1 node experiment still involves 24 MPI processes, most processes own boundary regions
of the domain and therefore communicate with fewer than the maximum number of nearest
neighbors (in the 3D case, the 24 processes are arranged in a 2× 3× 4 grid, so all processors
are on the boundary). Thus, both cheaper intranode communication and boundary effects
cause greater differences at the left end of the plot. Figure 6(b) shows the raw times for
all sparse matrix multiplications involved in computing Ac (as well as the cost of explicit
redistribution of P as required by the row-wise approach) for the 3D 27-point problem. Note
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multiplication.

that the A ·P multiplication has about twice the cost of the other operations even though its
theoretical communication requirements are lower than the row-wise algorithm for R · (AP );
for this problem, the A · P spends about 85% of its time in the local multiplication (likely
bottlenecked by memory bandwidth). Note also that the cost of the outer-product algorithm
for R · (AP ) is less than the cost of explicitly transposing P (redistributing R) alone, and
the R · (AP ) operation even includes the cost of the transposing the local entries of P to
obtain R in column-wise distribution.

6.3 Unstructured Problems

In this section we consider more realistic problems with unstructured grids arising from a
fluid-flow application. In particular, we base our experiments on the SIERRA low Mach
module/Nalu code, an unstructured, low Mach number variable density turbulent flow ap-
plication code (see [20] for more details). The application code supports two types of dis-
cretizations: edge based (with connectivity similar to a 7-point stencil) and element-based
(with connectivity similar to a 27-point stencil). The turbulence models used are in the
class of modeling known as Large Eddy Simulations. We perform weak-scaling experiments,
considering four levels of discretization of the problem running on 2, 16, 128, and 1024 nodes
on Sky Bridge (16 cores per node).

As in the case of model problems, using the outer-product algorithm reduced communi-
cation compared to the row-wise algorithm for R · (AP ). In the largest edge discretization,
the row-wise algorithm communicates 2.3× as many rows and 2.3× as many total bytes. In
the largest element discretization, those ratios are 7.9× (for rows) and 3.7× (for data). Note
that the edge discretization involves connections among degrees of freedom of the unstruc-
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tured grid similar to a 7-point stencil on a structured grid, and the element discretization
is more similar to a 27-point stencil. The communication ratios reflect this similarity (see
Table 3).

Figure 7 shows the relative performance of the outer-product algorithm for R · (AP ) as
compared to the row-wise approach, which includes the cost of the redistribution of R. The
largest speedup of 2.5× is attained for the element discretization problem running on 1024
nodes (16,384 cores).

In Figure 8 we show the time breakdown of the R · (AP ) multiplication for the element
discretization. This plot matches that of Figure 5 for the model 3D 27-point problem. In
this case, the reduction in communication for the actual multiplication is 2.2× on 1024 nodes
(note that the reduction in maximum data communicated by any processor is a factor of
3.7). As in the case of the 3D 27-point problem, we see that the reduced communication
cost of the matrix multiplication as well as the avoidance of the explicit redistribution of P
contribute to the overall speedup, despite the fact the the outer-product algorithm requires
a slightly more expensive local matrix multiplication and a local merge step.

We present absolute times for all of the key operations in computing the triple product
for the element discretization in Figure 9. As observed for the model problems, the A · P
multiplication has the largest cost and is bottlenecked by local computation. Because that
operation requires less communication than R · (AP ) (using the row-wise algorithm), we
expect that in more communication-bound situations, the cost of the second multiply will
be slower and the benefit from the outer-product algorithm will be more pronounced.
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7 Conclusions

In this paper, we consider the three SpMM operations within the Galerkin triple product
of smoothed aggregation AMG. Our overall conclusion is that the row-wise algorithm is
the best 1D method for the first two multiplications and that the outer-product algorithm
the best 1D method for the third multiplication. This conclusion comes from theoretical
analysis applied to a model problem involving structured grids and a stencil operator, and it
is supported by an empirical evaluation that focuses on the comparison between the row-wise
and outer-product algorithms for the last SpMM.

While the exact communication costs of these SpMM operations are subject to the spar-
sity structures and parallel distributions of the matrices involved (and thus depend on the
particular distribution and aggregation schemes used and their effects at processor bound-
aries), we found that our theoretical predictions for relative communication costs in the
ideal case matched the empirical observations rather closely (see Table 3). Likewise, the un-
structured problems with matrix sparsity that mimicked the model problems demonstrated
similar communication behavior. Thus, we believe our conclusions that the outer-product
algorithm effectively reduces communication are representative of many physical problems.

In particular, we identify the main reason that the outer-product algorithm achieves a
communication reduction: the number of rows communicated is the size of the processor’s
coarse grid halo instead of the fine grid halo. In nearly all cases, a processor’s coarse grid
halo will be considerably smaller than the fine grid halo. However, the density of rows of the
coarse grid also plays a role in the amount of communication required by the outer-product
algorithm; this effect (and its relation to the effect on the row-wise algorithm) will be more
problem dependent.

In our theoretical analysis, we ignored the costs of local computation and arrived at
our algorithms of choice solely by their communication costs. Our empirical results show
that, at least for these problems, the local computation requires a considerable amount of
time, and even a large reduction in communication translates to a more modest decrease in
total run time (see Figure 5, for example). We expect that the outer-product algorithm will
have a more dramatic effect in more communication-bound situations, such as lower in the
multigrid hierarchy and in strong-scaling regimes where the initial problem is small relative
to the available number of processors.

Finally, we restricted our attention to performing the triple product with two multipli-
cations and using only 1D SpMM algorithms. We argue in Section 5.4 that performing the
triple product all-at-once increases the communication cost, but the reduced number of halo
exchanges may prove to be net-beneficial for some problems, particularly when the number
of neighbors is large (deep in the hierarchy). We do not consider 2D (or 3D – see [4]) SpMM
algorithms in this work, and because those sets of algorithms include all 1D ones, they can
only reduce communication further. We chose not to consider them primarily because they
would involve more fundamental changes to our underlying software framework, but also be-
cause we believe they will not offer significant advantage at the highest levels of the hierarchy
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(which we observed to be the greatest bottleneck). We plan to investigate these alternatives
in future work.
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A Analysis for Table 2

Table 2 presents the communication cost for the three SpMM computations for each of three
1D algorithms, assuming the fine grid operator A is a 3d-point stencil. The analysis for the
first column (corresponding to the row-wise algorithm) is given in Section 5.2.1, and the
analysis for the Ac = R · (AP ) multiply using the outer-product algorithm is given in Section
5.2.2. Here we provide explanations for the other entries of the table.

The second column of Table 2 corresponds to the column-wise algorithm, where only
entries of the left input matrix are communicated. The column-wise algorithm applied to
A · P̂ requires no communication, assuming all matrices are column-wise distributed and
aggregates do not cross processor boundaries. In this case, P̂ has no nonzeros at entries
corresponding to local fine grid points and nonlocal coarse grid aggregates. In order to
compute P = A · P̂ in column-wise distribution, each processor needs to receive columns
of A corresponding to nonlocal fine grid points that are adjacent to local aggregates in the
graph corresponding to P̂ . However, due to the properties of P̂ , this is the empty set.

Performing AP = A · P using the column-wise algorithm does require communication.
Again, each processor needs to receive columns of A corresponding to nonlocal fine grid
points that are adjacent to local aggregates in the graph corresponding to P . In this case,
there are hF such points, and each column of A consists of 3d nonzeros. Thus, counting both
sends and receives, the communication cost is 2 · 3d · hF for this algorithm.

If we use the column-wise algorithm for Ac = R · (AP ), the communication cost is
2(5/3)d · hF . In this case, each processor needs to receive columns of R corresponding
to nonlocal fine grid points that are adjacent to local coarse grid aggregates in the graph
corresponding to AP . Since the graph corresponding to AP depends on pairs of 2-hop
neighbors in the graph corresponding to A, the nonlocal fine points that are adjacent to
local aggregates is a halo of width two. Thus, the number of columns needed by each
processor is approximately 2hF , and each column of R has (5/3)d nonzeros. Again, sends
and receives are balanced.

The third column of Table 2 corresponds to the outer-product algorithm, where only
entries of the output matrix are communicated. The entries in the table assume the input
matrices have matching column- and row-wise distributions, and the output is distributed
row-wise. We first consider P = A · P̂ . For a processor to compute its local rows of P , it
needs access to all length-two paths from its local fine points to all aggregates that consist
of one edge in the graph corresponding to A and one edge in the graph corresponding to P̂ .
By the assumed distribution of A and P̂ , it can compute locally all paths that start from
any fine point, visit a local fine point, and end at any aggregate. It must receive from other
processors data corresponding to paths starting from a local fine point, visiting a nonlocal
fine point, and ending at any aggregate. Such paths must start from an inner halo fine grid
point, so the number of rows read is hF . The number of aggregates reachable from an inner
halo point, provided that the hop in the fine grid is taken to an outer halo point, is (5/3)d−1

on average. Thus, the communication cost of the outer-product algorithm for computing
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P = A · P̂ is 2 · (5/3)d−1 · hF . We note that the outer-product algorithm can compute P
in column-wise distribution with no communication; the cost of explicitly redistributing P
from column-wise to row-wise distribution is also 2 · (5/3)d−1 · hF .

Finally, we consider using the outer-product algorithm for AP = A · P . In this case,
each processor needs information corresponding to length-three paths that start at local fine
points, take two hops in the graph corresponding to A, and end at an aggregate with the last
hop in the graph corresponding to P̂ . In this case, a processor must receive data for paths
that take their first hop from an inner halo fine point to an outer halo fine point. Here, the
number of rows is again hF , and the number of nonzeros in the (unreduced) rows corresponds
to the number of aggregates reachable from a halo point under this path restriction, which
is 2(7/3)d−1 on average. We note that the outer-product algorithm can compute AP in
column-wise distribution for a cost of 7d−1 · hF .
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